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Abstract

Some computational grid applications have very
large resource requirements and need simultaneous ac-
cess to resources from more than one parallel computer.
Current scheduling systems do not provide mechanisms
to gain such simultaneous access without the help of hu-
man administrators of the computer systems. In this
work, we propose and evaluate several algorithms for
supporting advanced reservation of resources in super-
computing scheduling systems. These advanced reser-
vations allow users to request resources from scheduling
systems at specific times. We find that the wait times
of applications submitted to the queue increases when
reservations are supported and the increase depends on
how reservations are supported. Further, we find that
the best performance is achieved when we assume that
applications can be terminated and restarted, backfilling
is performed, and relatively accurate run-time predic-
tions are used.

1. Introduction

A recent trend in high-performance computing are
computational grids [5]. Computational grid applica-
tions use high-performance, distributed resources such
as computers, networks, databases, and instruments.
Such applications are enabled by grid toolkits such as
Globus [4] or Legion [6] that provide a software in-
frastructure for security, information, resource man-
agement, communication, access to remote data, and
other services that are typically layered over existing lo-
cal services. Several computational grid testbeds have
been deployed [1, 2, 7, 13, 14] and we have found that

many applications have very large resource require-
ments and require resources from multiple parallel com-
puters to execute.

The difficulty with these applications is that cur-
rent supercomputer scheduling systems do not pro-
vide mechanisms that allow several scheduling systems
to provide simultaneous access to resources. At the
present time, a user has to either communicate with
the administrators of the computers and arrange for re-
sources to be reserved, or submit applications to queues
on each computer system with no guarantee that the
subapplications will execute simultaneously. In this pa-
per, we investigate one solution to this co-allocation
problem: advanced reservation of resources. Reserva-
tions allow a user to request resources from multiple
scheduling systems at a specific time and thus gain
simultaneous access to enough resources for their ap-
plication. Advanced reservations are currently being
added to the Portable Batch System (PBS) [15] and
the Maui scheduler [12], but a thorough study of the
implications of supporting for advanced reservations in
scheduling systems has not been made.

We investigate several different ways to add sup-
port for reservations into scheduling systems and eval-
uate their performance. We evaluate scheduling per-
formance using the following metrics:

o Utilization. The average percent of the machine
that is used by applications.

o Mean wait time. The average amount of time that
applications wait before receiving resources.

e Mean offset from requested reservation time. The
average difference between when the users initially
want to reserve resources for each application and
when they actually obtain reservations.



The utilization and mean wait time metrics allow us to
examine the effect that support for reservations has on
traditional scheduling performance. The mean offset
from requested reservation time is a new metric and
measures how well the scheduler performs at satisfying
reservation requests.

In this paper, we use these metrics to evaluate a
variety of techniques for combining scheduling from
queues with reservation. There are several assump-
tions and choices to be made when doing this. The first
is whether applications are restartable. Most schedul-
ing systems currently assume that applications are not
restartable (a notable exception is the Condor sys-
tem [9]). We evaluate scheduling techniques when ap-
plications both can and cannot be restarted. We as-
sume that when an application is terminated, inter-
mediate results are not saved and applications must
restart execution from the beginning. We also assume
that a running application that was reserved cannot be
terminated to start another application. Further, we
assume that once the scheduler agrees to a reservation
time, the application will start at that time. Further
details of our model along with other background in-
formation are presented in Section 2

If we assume that applications are not restartable
and that once a reservation is made, the scheduler
must fulfill it, then we must use maximum run times
when predicting application execution times to ensure
that nodes are available. The resulting scheduling algo-
rithms essentially perform backfilling. Maximum run
times are typically either given by the user for each
application or are associated with a queue. If an ap-
plication executes longer than it’s maximum run time
it may be terminated. Details of scheduling algorithms
making this assumption and an evaluation of their per-
formance are presented in Section 3.

If applications are restartable, there are more op-
tions for the scheduling algorithm and this allows us to
improve the scheduling performance. First, the sched-
uler can use run-time predictions other than maximum
run times. Second, there are many different ways to
select which running applications from the queue to
terminate to start a reserved application. Details of
these options and their performance are presented in
Section 4

2. Background

This section describes the scheduling algorithms we
modify to support reservations, the workloads we use
to evaluate our algorithms, and the model we use for
reservations.

2.1 SchedulingAlgorithms

We modify scheduling algorithms that use two dif-
ferent queue orders and that may or may not perform
backfilling. The two basic queue orders are first-come
first-served (FCFS) and least work first (LWF). For
FCFS, applications are ordered by the time in which
they arrive. For LWF, applications are ordered by the
predicted amount of work they will perform (number
of nodes multiplied by estimated wallclock execution
time). We also apply conservative backfilling [8, 3]
to both of these queue orderings. The backfill algo-
rithm allows an application to run before it would in
it’s queue order if it will not delay the execution of
applications ahead of it in the queue.

2.2 Workloads

We begin with four workloads recorded from three
supercomputers to evaluate our scheduling algorithms.
The workload traces that we consider are described in
Table 1; they originate from Argonne National Labo-
ratory (ANL), the Cornell Theory Center (CTC), and
the San Diego Supercomputer Center (SDSC).

To evaluate our different scheduling algorithms that
support reservations, we derive two new workloads
from each of the four workloads described in Table 1.
We randomly change either 10 percent or 20 percent of
the applications in an original workload to be reserva-
tions. We choose these percentages because we believe
that the majority of applications will not need reser-
vations to execute and policy decisions will be made
so that there will be no start time advantage to mak-
ing a reservation over submitting to a queue. For each
reservation, we randomly set the requested reservation
time to be within zero to two hours in the future. We
also experimented with setting the requested reserva-
tion time to be one to three or two to four hours in the
future [10]. We found that the performance was almost
identical for the three ranges so we only present results
where reservations are requested zero to two hours in
advance.

2.3 Resewvation Model

Next, we describe the model we use for reservations.
First, in our model, a reservation request consists of
the number of nodes desired, the maximum amount
of time the nodes will be used, the desired start time,
and the application to run on those resources. Second,
we assume that the following procedure occurs when a
user wishes to submit a reservation request:



Table 1. Characteristics of the workloads used in our studies.

Mean
Workload Number of Number of | Run Time
Name System Nodes Location When Requests | (minutes)
ANL T IBM SP2 120 ANL 3 months of 1996 7994 97.40
CTC IBM SP2 512 CTC 11 months of 1996 79302 182.18
SDSC95 | Intel Paragon 400 SDSC 12 months of 1995 22885 107.76
SDSC96 | Intel Paragon 400 SDSC 12 months of 1996 22337 166.48

1. The user asks if they can run an application at
time T, on N nodes for at most M amount of
time.

2. The scheduler makes the reservation at time 7T, if
it can. In this case, the reservation time, T', equals
the requested reservation time, 7.

3. If the scheduler cannot make the reservation at
time T, it replies with a list of times it could make
the reservation and the user picks the available
time T which is closest in time to 7.

The last part of the model is what occurs when an
application is terminated. First, only applications that
came from a queue can be terminated. Second, when
an application is terminated, it is placed back in the
queue from which it came in its correct position.

3. Nonrestartable Applications

In this section, we assume that applications cannot
be terminated and restarted at a later time and that
once a reservation is agreed to by the scheduler, it must
be fulfilled. A scheduler with these assumptions must
not start an application from a queue unless it is sure
that starting that application will not cause a reserva-
tion to be unfulfilled. Further, the scheduler must make
sure that reserved applications do not execute longer
than expected and prevent other reserved applications
from starting.

There are two mechanisms to be described to sup-
port these constraints. The first is how the sched-
uler decides when an application from a queue can be
started. The technique used for this is very similar to
the backfill algorithm: The scheduler creates a timeline
of when it believes the nodes of the system will be used
in the future. First, the scheduler adds the currently

!Because of an error when the trace was recorded, the ANL
trace does not include one-third of the requests actually made
to the system. To compensate, we reduced the number of nodes
on the machine from 120 to 80 when performing simulations.

running applications and the reserved applications to
the timeline using their maximum run times. Then, the
scheduler attempts to start applications from the queue
using the timeline and the number of nodes and max-
imum run time requested by the application to make
sure that there are no conflicts for node use.

If backfilling is not being performed, the timeline is
still used when starting an application from the head
of the queue to make sure that the application does not
use any nodes that will be needed by reservations. If
backfilling is used, the timeline is used to try to start
applications from the queue and to “reserve” nodes
for the applications at the earliest time in the future
that they can run if they cannot start at the current
time. These “reservations” are not true reservations,
just placeholders so that applications later in the queue
will not start and delay the application.

The second mechanism is how a scheduler makes a
reservation. To make a reservation, the scheduler first
performs a scheduling simulation of applications cur-
rently in the system and produces a timeline of when
nodes will be used in the future. This timeline is then
used to determine when a reservation for an applica-
tion can be made. The scheduler uses maximum run
times when creating the timeline. This guarantees that
reserved applications do not conflict with running ap-
plications or other reserved applications.

One parameter that is used when reserving resources
is the relative priorities of queued and reserved applica-
tions. For example, if queued applications have higher
priority, then an incoming reservation cannot delay any
of the applications in the queues from starting. If re-
served applications have higher priority, then an in-
coming reservation can delay any of the applications in
the queue. The parameter we use is the percentage of
queued applications can be delayed by a reservation re-
quest and this percentage of applications in the queue
is simulated when producing the timeline that defines
when reservations can be made.

In the next subsections, we first examine the effect
reservations have on utilization and the mean wait time



of applications from the queue. Second, we examine
the changes in the difference between the requested
reservation time and the time the reservation is actu-
ally made when different scheduling strategies are used.
Third, we look at the changes in performance when we
vary the number of applications from the queue that
an application can delay.

3.1 Effect of Resewations on Scheduling

This section evaluates the impact on the mean wait
times of queued applications when reservations are
added to our workloads. We assume the best case for
queued applications: When reservations arrive, they
cannot be scheduled so that they delay any currently
queued applications. First, we examine the wait times
of queued jobs when backfilling is not allowed.

We find that adding reservations increases the wait
times of queued applications in almost all cases. For all
of the workloads, queue wait times increase an average
of 13 percent when 10 percent of the applications are
reservations and 62 percent when 20 percent of the ap-
plications are reservations. Our data also shows that
if we perform backfilling, the mean wait times increase
by only 9 percent when 10 percent of the applications
are reservations and 37 percent when 20 percent of the
applications are reservations. This is a little over half
of the increase in mean wait time when backfilling is
not used. Further, there is a slightly larger increase in
queue wait times for the LWF queue ordering than for
the FCFS queue ordering.

We also examined the utilization of the machines
being simulated for our various experiments. We find
that the utilization does not change for the CTC and
SDSC workloads for any queue ordering, backfilling, or
any number of reservations. This occurs because of the
workloads themselves. The applications in the work-
loads arrive steadily over time with more submissions
occuring during the day and less at night. Even the
most inefficient scheduling algorithm studied here does
not fall far enough behind the arriving jobs so that
it takes a significant amount of time longer to finish
executing all of the jobs in the workload.

At first, the results for the ANL workload appear
to be different. If no reservations are made, then the
utilization is between 70 and 71 percent (the highest of
any of our workloads) for both queue orderings and if
backfilling is or is not used. Once again, this is demon-
strating that even the most inefficient scheduling algo-
rithm does not fall very far behind arriving jobs, even
for our most demanding workload. But, when reserva-
tions are supported, the utilization drops to between 54
and 59 percent. The utilizations are higher when there

are 10 percent reservations instead of 20 percent. This
seems to indicate that support for reservations will have
a large effect on the utilization of highly-loaded sys-
tems, but closer examinination of the data contradicts
this theory. The data shows that the lower utilization
is due a few reserved applications at the end of the
simulations If these last reserved applications are not
considered, then the utilization only decreases slightly
when reservations are supported. We claim that the
affect on utilization of these last reservations can be
ignored because in a real computer system, there is
not end to the workload being scheduled.

3.2 Offset from RequestedReserations

In this section, we examine the difference between
the requested reservation times of the applications in
our workload and the times they receive their reserva-
tions. We again assume that reservations cannot be
made at a time that would delay the startup of any
applications in the queue at the time the reservation is
made.

The performance is what is expected in general: the
offset is larger when there are more reservations. For
10 percent reservations, the mean difference from re-
quested reservation time is 211 minutes. For 20 per-
cent reservatons, the mean difference is 278 minutes.
This is an increase of 32 percent over the mean differ-
ence from requested reservation time when 10 percent
of the applications are reservations.

Our data also shows that the difference between re-
quested reservation times and actual reservation times
is 49 percent larger when FCFS queue ordering is used.
The reason for this may be that LWF queue order-
ing will execute the applications currently in the queue
faster than FCFS. Therefore, reservations that cannot
delay any queued jobs can start earlier.

We also observe that if backfilling is used, the mean
difference from requested reservation times increases by
32 percent over when backfilling is not used. This is
at odds with the previous observation that LWF queue
ordering results in smaller offsets from requested reser-
vation times. Backfilling also executes the applications
in the queue faster than when there is no backfilling.
Therefore, you would expect a smaller offsets from re-
quested reservation times. An explanation for this be-
havior could be that backfilling is packing applications
from the queue tightly onto the nodes and is not leav-
ing many gaps free to satisfy reservations before the
majority of the applications in the queue have started.



3.3 Effect of Application Priority

Next, we examine the effects on mean wait time and
the mean difference between reservation time and re-
quested reservation time when queued applications are
not given priority over all reserved applications. We
accomplish this by giving zero, fifty, or one-hundred
percent of queued applications priority over a reserved
application when a reservation request is being made
(rephrased, not delaying one-hundred, fifty, or zero
percent of queued applications when a reservation is
made).

The data shows that there is a significant impact on
both wait time and offset from requested reservation
time when the number of queued applications that can
be delayed by reservations is varied. As expected, if
more queued applications can be delayed when a reser-
vation request arrives, then the wait times are generally
longer and the offsets are smaller. On average, for the
ANL workload, decreasing the percent of queued appli-
cations with priority from 100 to 50 percent increases
mean wait time by 7 percent and decreases mean offset
from requested reservation times by 39 percent. De-
creasing the percent of queued application with pri-
ority from 100 to 0 percent increases mean wait time
by 22 percent and decreases mean offset by 89 per-
cent. These results for the change in the offset from
requested reservation time are representative of the re-
sults from the other three workloads: as fewer queued
applications have priority, the reservations are closer
to their requested reservations.

The large decrease in mean offset from requested
reservation time when the number of queued jobs with
priority decreases compared to the smaller increases in
mean wait times seems to indicate that reservations
should be given priority over queued jobs. The dif-
ficulty with this approach is that users would notice
this and would therefore start making reservations for
applications that could have been sent to the queue.
This would increase the percent of applications that
are reservations and, our data shows, increase the av-
erage wait time of all applications.

4. Restartable Applications

This section describes and evaluates our techniques
for performing reservations assuming that running ap-
plications can be terminated and restarted at a later
time. If we make this assumption, we can use run-time
predictions other than maximum run times and this
allows us to improve scheduling performance.

4.1 Run-Time Predictions

We use a technique that we have previously devel-
oped [11, 10] to predict the execution times of applica-
tions. This technique uses a historical database of ap-
plications that have executed in the past to find similar
applications and to derive run-time predictions.

4.2 SelectingApplications for Termination

There are many possible ways to select which run-
ning applications that came from a queue should be
terminated to allow a reservation to be satisfied. We
choose a rather simple technique where the scheduler
orders running applications from queues in a list based
on some cost. The applications are then terminated in
increasing order of cost until enough nodes are avail-
able for the reservation to be satisfied.

We use the equation aNT}, +bNT} to determine the
cost of terminating each application. In the equation,
a, and b are constants, N is the number of nodes be-
ing used by the application, T}, is the amount of time
the application has executed, and T} is the amount
of time the scheduler expects the application will con-
tinue to execute. The motivation behind this equation
is that increasing the constant a will increase the cost of
terminating an application that has performed a large
amount of work that would be lost, and decreasing b
below zero will decrease the cost of terminating the
application if it still has a large amount of work to do.

We vary the constants a and b to determine the op-
timal values for @ and b. We choose a and b such that
a—b = 1.0 and vary a between 0.0 and 1.0 in increments
of 0.1. These values allow us to perform experiments
varying the percentage of the termination cost associ-
ated with the amount of work performed from zero to
one hundred percent with the amount of work yet to
do contributing the remaining percent. Our data shows
that the best values to use for the constants vary by
the scheduling algorithm and if the mean wait time or
mean difference from requested reservation time is be-
ing optimized. However, there are several trends that
can be seen in the data. First, |a| is larger than |b|.
This indicates that the amount of work done thus far
is the most important factor to consider when selecting
which applications to terminate. Second, in over half
of the cases both mean wait time and the mean differ-
ence in reservation is optimized with the same values
of a and b. Third, we observe that the mean wait times
do not change smoothly as, say, a is increased from 0.0
to 1.0.



4.3 Comparisonto Nonrestartable Techniques

We will now compare scheduling performance when
applications can be terminiated to when they cannot.
We performed simulations using only the ANL work-
load due to time constraints. Our data shows that
if applications can be terminated and restarted, the
mean wait time decreases by 7 percent and the mean
difference from requested reservation time decreases by
55 percent. There is no significant effect on utilization.
This shows that there is a performance benefit if we as-
sume that applications are restartable, particularly in
the mean difference from requested reservation time.

5. Conclusions

In this paper we examine the performance of sev-
eral different techniques for combining scheduling us-
ing queues with reservations. First, we examine tech-
niques when applications cannot be restarted. We find
that this forces us to use maximum run times for run-
time predictions and techniques similar to backfilling.
If we assume that reservations cannot delay the start of
any of the applications in the queue when a reservation
is made, then supporting reservations with backfilling
increases the wait times of applications in the queue
by 9 percent when 10 percent of the applications are
reservations and by 37 percent when 20 percent of the
applications are reservations. We also find that the
mean difference between requested reservation times
and reservation times is 211 minutes when 10 percent
of the applications are reservations and 278 minutes
when 20 percent of the applications are reservations.
We show that for the ANL workload (which is repre-
sentative) if we decrease the percent of queued applica-
tions that cannot be delayed by a reservation from 100
to 50 then the mean wait time increases by an average
of 7 percent and the mean difference from the requested
reservation time decreases by 39 percent. If we decrease
the percent of queued applications with priority from
100 to O percent then the mean wait time increases
by 22 percent and the mean difference decreases by 89
percent.

Second, we evaluate scheduling techniques that as-
sume that applications can be terminated and restarted
at a later time. We use an equation to determine the
cost of terminating each running application and use
these costs when picking applications to terminate. We
find that the cost should largely be determined by the
amount of time the application has executed and the
number of nodes it has used, but a prediction on the
amount of time the execution has left to run should also
be considered. Finally, if we assume that applications

can be restarted and therefore our run-time predictions
can be used, the mean wait time is decreased by 7 per-
cent on average and the mean difference between the
requested reservation times and the actual reservation
times decreases by 55 percent.
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